Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurochem ; 159(1): 12-14, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34252196

RESUMO

Various neuroimaging approaches have reported alterations in brain connectivity in patients with autism spectrum disorder (ASD). Nevertheless, specific cellular and molecular mechanisms underlying these alterations remain to be elucidated. In the present Editorial, we highlight an article in the current issue of the Journal of Neurochemistry that provides first evidence for the structural and cellular basis of an atypical corpus callosum long-distance connectivity impairments observed in ASD patients. The authors used a juvenile valproic acid (VPA) rat model of ASD that presents with reduced myelin level, specifically in the corpus callosum, and with an altered myelin sheet structure that is closely associated with the behavioral alteration found in these rats. This hypomyelination occurs primarily during infancy prior to oligodendroglial alterations, implicating that axonal-oligodendroglial connections are compromised in this model. Concomitant with the hypomyelination, the ASD rat model showed an atypical brain metabolic pattern, with hypometabolic activity across the whole brain, and hypermetabolism in brain areas related to autistic-like behavior. These findings contribute to unravel the neurobiological basis underlying white matter alteration and altered long-distance brain connectivity as described in ASD, paving the way to the development of new early diagnostic markers and toward developing future specific therapies for ASD.


Assuntos
Transtorno Autístico/induzido quimicamente , Transtorno Autístico/metabolismo , Corpo Caloso/metabolismo , Rede Nervosa/metabolismo , Ácido Valproico/toxicidade , Animais , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/patologia , Transtorno Autístico/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Corpo Caloso/efeitos dos fármacos , Humanos , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/patologia , Ratos
2.
Mol Psychiatry ; 26(12): 7596-7609, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34331007

RESUMO

Shank3 monogenic mutations lead to autism spectrum disorders (ASD). Shank3 is part of the glutamate receptosome that physically links ionotropic NMDA receptors to metabotropic mGlu5 receptors through interactions with scaffolding proteins PSD95-GKAP-Shank3-Homer. A main physiological function of the glutamate receptosome is to control NMDA synaptic function that is required for plasticity induction. Intact glutamate receptosome supports glutamate receptors activation and plasticity induction, while glutamate receptosome disruption blocks receptors activity, preventing the induction of subsequent plasticity. Despite possible impact on metaplasticity and cognitive behaviors, scaffold interaction dynamics and their consequences are poorly defined. Here, we used mGlu5-Homer interaction as a biosensor of glutamate receptosome integrity to report changes in synapse availability for plasticity induction. Combining BRET imaging and electrophysiology, we show that a transient neuronal depolarization inducing NMDA-dependent plasticity disrupts glutamate receptosome in a long-lasting manner at synapses and activates signaling pathways required for the expression of the initiated neuronal plasticity, such as ERK and mTOR pathways. Glutamate receptosome disruption also decreases the NMDA/AMPA ratio, freezing the sensitivity of the synapse to subsequent changes of neuronal activity. These data show the importance of a fine-tuning of protein-protein interactions within glutamate receptosome, driven by changes of neuronal activity, to control plasticity. In a mouse model of ASD, a truncated mutant form of Shank3 prevents the integrity of the glutamate receptosome. These mice display altered plasticity, anxiety-like, and stereotyped behaviors. Interestingly, repairing the integrity of glutamate receptosome and its sensitivity to the neuronal activity rescued synaptic transmission, plasticity, and some behavioral traits of Shank3∆C mice. Altogether, our findings characterize mechanisms by which Shank3 mutations cause ASD and highlight scaffold dynamics as new therapeutic target.


Assuntos
Transtorno Autístico , Proteínas dos Microfilamentos , Proteínas do Tecido Nervoso , Animais , Transtorno Autístico/genética , Transtorno Autístico/metabolismo , Modelos Animais de Doenças , Endossomos/metabolismo , Ácido Glutâmico/metabolismo , Camundongos , Proteínas dos Microfilamentos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Sinapses/metabolismo
3.
Curr Opin Pharmacol ; 56: 93-101, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33429227

RESUMO

The N-methyl-d-aspartate (NMDA) receptor, among the ionotropic glutamate receptors, are fundamental to integrating and transducing complex signaling in neurons. Glutamate activation of these receptors mediates intracellular signals essential to neuronal and synaptic formation and synaptic plasticity and also contribute to excitotoxic processes in several neurological disorders. The NMDA receptor signaling is mediated by the permeability to Ca2+ and by the large network of signaling and scaffolding proteins associated mostly with the large C-terminal domain of GluN2 subunits. Important studies showed that GluN2 C-terminal interactions differ in accordance with the GluN2 subtype, and this influences the type of signaling that NMDA receptor activity controls. Thus, it is not surprising that mutations in genes that codify for NMDA receptor subunits have been associated with severe neuronal diseases. We will review recent advances and explore outstanding problems in this active area of research.


Assuntos
Neurônios , Receptores de N-Metil-D-Aspartato , Humanos , Plasticidade Neuronal , Neurônios/metabolismo , Subunidades Proteicas/metabolismo , Transdução de Sinais
4.
Sci Transl Med ; 12(547)2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32522805

RESUMO

Heterozygous mutations of the gene encoding the postsynaptic protein SHANK3 are associated with syndromic forms of autism spectrum disorders (ASDs). One of the earliest clinical symptoms in SHANK3-associated ASD is neonatal skeletal muscle hypotonia. This symptom can be critical for the early diagnosis of affected children; however, the mechanism mediating hypotonia in ASD is not completely understood. Here, we used a combination of patient-derived human induced pluripotent stem cells (hiPSCs), Shank3Δ11(-/-) mice, and Phelan-McDermid syndrome (PMDS) muscle biopsies from patients of different ages to analyze the role of SHANK3 on motor unit development. Our results suggest that the hypotonia in SHANK3 deficiency might be caused by dysfunctions in all elements of the voluntary motor system: motoneurons, neuromuscular junctions (NMJs), and striated muscles. We found that SHANK3 localizes in Z-discs in the skeletal muscle sarcomere and co-immunoprecipitates with α-ACTININ. SHANK3 deficiency lead to shortened Z-discs and severe impairment of acetylcholine receptor clustering in hiPSC-derived myotubes and in muscle from Shank3Δ11(-/-) mice and patients with PMDS, indicating a crucial role for SHANK3 in the maturation of NMJs and striated muscle. Functional motor defects in Shank3Δ11(-/-) mice could be rescued with the troponin activator Tirasemtiv that sensitizes muscle fibers to calcium. Our observations give insight into the function of SHANK3 besides the central nervous system and imply potential treatment strategies for SHANK3-associated ASD.


Assuntos
Transtorno Autístico , Células-Tronco Pluripotentes Induzidas , Animais , Humanos , Camundongos , Proteínas dos Microfilamentos , Músculo Esquelético , Mutação/genética , Proteínas do Tecido Nervoso/genética , Junção Neuromuscular
5.
ACS Appl Mater Interfaces ; 11(31): 28125-28137, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31356041

RESUMO

Hybrid interfaces between living cells and nano/microstructured scaffolds have huge application potential in biotechnology, spanning from regenerative medicine and stem cell therapies to localized drug delivery and from biosensing and tissue engineering to neural computing. However, 3D architectures based on semiconducting polymers, endowed with responsivity to visible light, have never been considered. Here, we apply for the first time a push-coating technique to realize high aspect ratio polymeric pillars, based on polythiophene, showing optimal biocompatibility and allowing for the realization of soft, 3D cell cultures of both primary neurons and cell line models. HEK-293 cells cultured on top of polymer pillars display a remarkable change in the cell morphology and a sizable enhancement of the membrane capacitance due to the cell membrane thinning in correspondence to the pillars' top surface, without negatively affecting cell proliferation. Electrophysiology properties and synapse number of primary neurons are also very well preserved. In perspective, high aspect ratio semiconducting polymer pillars may find interesting applications as soft, photoactive elements for cell activity sensing and modulation.


Assuntos
Técnicas de Cultura de Células , Materiais Revestidos Biocompatíveis/química , Dimetilpolisiloxanos/química , Neurônios/metabolismo , Semicondutores , Animais , Células HEK293 , Humanos , Neurônios/citologia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...